Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(2)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38275701

ABSTRACT

The purpose of this study was to determine the origin, presence, and fate of the endocrine disruptor di-ethylhexil phthalate (DEHP) during tequila production. For this, three tequila factories (small, medium, and large) were monitored. DEHP concentrations in water, agave, additives, lubricating greases, neoprene seals, and materials of each stage process were analyzed using gas chromatography/mass spectrometry. DEHP mass balances were performed to identify the processes with significant changes in the inputs/outputs. DEHP was detected in agave at up to 0.08 ± 0.03 mg kg-1, water 0.02 ± 0.01 mg kg-1, lubricant greases 131.05 ± 2.80 mg kg-1, and neoprene seals 369.11 ± 22.52 mg kg-1. Whereas, tequila produced in the large, medium, and small factories contained 0.05 ± 0.01, 0.24 ± 0.04, and 1.43 ± 0.48 mg kg-1 DEHP, respectively. Furthermore, in waste materials (vinasses and bagasse) released, 534.26 ± 349.02, 947.18 ± 65.84, and 5222.60 ± 2836.94 mg of DEHP was detected for every 1000 L of tequila produced. The most significant increase in DEHP occurred during the sugar extraction and distillation stages. Results demonstrate that main raw materials, such as agave and water, contain DEHP, but lubricant greases and neoprene seals are the major sources of DEHP contamination. Identification of the contamination sources can help the tequila industry to take actions to reduce it, protect consumer health and the environment, and prevent circular contamination.

2.
Pharmaceutics ; 14(9)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36145602

ABSTRACT

Herein, we report the synthesis of Au nanoparticles (AuNPs) in chitosan (CTS) solution by chemically reducing HAuCl4. CTS was further functionalized with glycidyl methacrylate (chitosan-g-glycidyl methacrylate/AuNP, CTS-g-GMA/AuNP) to improve the mechanical properties for cellular regeneration requirements of CTS-g-GMA/AuNP. Our nanocomposites promote excellent cellular viability and have a positive effect on cytokine regulation in the inflammatory and anti-inflammatory response of skin cells. After 40 days of nanocomposite exposure to a skin wound, we showed that our films have a greater skin wound healing capacity than a commercial film (TheraForm®), and the presence of the collagen allows better cosmetic ave aspects in skin regeneration in comparison with a nanocomposite with an absence of this protein. Electrical percolation phenomena in such nanocomposites were used as guiding tools for the best nanocomposite performance. Our results suggest that chitosan-based Au nanocomposites show great potential for skin wound repair.

SELECTION OF CITATIONS
SEARCH DETAIL
...